Abstract

The dynamics of unentangled cis-1,4-polyisoprene confined within self-ordered nanoporous alumina (AAO) is studied as a function of molecular weight (5000–300 g/mol) and pore size (400–25 nm) with dielectric spectroscopy. The main effects are the pronounced broadening of both segmental and chain modes with decreasing AAO pore diameter. This suggests that the global chain relaxation is retarded on confinement. Remarkably, the distribution of relaxation times is broadened even within pores with size 50 times the unperturbed chain dimensions. The glass temperature is unaffected by confinement. These results are discussed in terms of confinement and adsorption effects. Confinement effects are negligible for the studied molecular weights. Chain adsorption, on the other hand, involves time and length scales distinctly different from the bulk that can account for the experimental findings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.