Abstract

Azulene is an attractive building block for molecular electronics design owing to the intrinsic charge separation within its sp2-carbon scaffold. In this context, the structure and molecular organization in self-assembled monolayers (SAMs) of unsubstituted and nitrile-functionalized azulenethiolates on Au(111) substrates were studied by a variety of complementary spectroscopic techniques. The molecule of 2-mercapto-6-cyanoazulene was specifically designed to be addressable within the core hole clock approach in the general framework of resonant Auger electron spectroscopy. The azulenic SAMs described herein were documented to be well-defined and densely packed, with their individual molecular constituents oriented upright with respect to the Au surface, but with considerable tilt and twist. The electron transfer (ET) properties of these azulenic SAMs were found to be comparable to those of analogous naphthalene-based monolayers, which suggests that the charge separation and the related dipole moment have ...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call