Abstract

The triply differential cross section has been measured for electron-impact ionization of the outer valence 1t2 and the inner valence 2a1 orbitals of methane using the (e,2e) technique with coplanar asymmetric kinematics. The measurements are performed at scattered electron energy of 500 eV, ejected electron energy of 12, 37 and 74 eV and for scattering angle of the fast outgoing electron of 6°. This kinematics is characterized by a target ion recoil momentum ranging from moderate (0.25 au) to very large (3.2 au) values. The results are compared with theoretical cross sections calculated using the 1CW and the BBK models recently extended to molecules. The experimental cross sections exhibit a very large recoil scattering, especially for the inner 2a1 molecular orbital, which is not predicted by the theory. The differences between experiment and theory are attributed to the very strong scattering from the ion, not properly accounted for by theory. This indicates the need for further theoretical developments as well as experimental investigations in order to correctly model the process of molecular ionization.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.