Abstract

A numerical simulation has been made for the dynamics of non-thermal electrons (> 10keV) injected with spatial, temporal and velocity distributions into a model coronal loop. The time variations of the spatial intensity distribution and the spectrum for the expected hard X-rays are computed for many models in order to find the important physical parameters for those characteristics. The most important one is the column density of plasma, CD, along the loop. If CD is smaller than 1020 cm−2, the expected X-rays behave like the solar impulsive hard X-ray bursts, that is the spatial maximum of X-rays shifts to the top of the loop in the later phase of the burst accompanying a spectral softening. On the other hand, if CD is greater than this value, ‘quasi-steady decay’ appears in the later phase. In this case the intensity distribution of X-rays above about 20 keV along the loop shows a broad maximum away from the loop top giving an extended spatial distribution of hard X-rays, and spectral hardness is kept constant. These characteristics are similar to the solar gradual hard X-ray bursts (the so-called extended burst which is not a hot thermal gradual burst).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call