Abstract

A shallow water model that incorporates surface tension and electric field effects is developed to investigate the dynamics of an electrified liquid surface. The computational model is verified against the Zakharov–Kuznetsov equation and is applied to study the growth and damping of the electrified liquid surface. A linear wave analysis is performed under a shallow water theory assuming an analytic solution of the electric field, similar to the Tonks–Frenkel instability. The electrified liquid surface grows or dampens based on the balance of the electric field, surface tension, and gravitational forces. The numerical results obtained from the electrified shallow water solver are in good agreement with the theoretical analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.