Abstract

The presence of submicrometer structures at liquid-fluid interfaces modifies the properties of many science and technological systems by lowering the interfacial tension, creating tangential Marangoni stresses, and/or inducing surface viscoelasticity. Here we experimentally study the break-up of a liquid filament of a silica nanoparticle dispersion in a background oil phase that contains surfactant assemblies. Although self-similar power-law pinch-off is well documented for threads of Newtonian fluids, we report that when a viscoelastic layer is formed insitu at the interface, the pinch-off dynamics follows an exponential decay. Recently, such exponential neck thinning was found theoretically when surface viscous effects were taken into account. We introduce a simple approach to calculate the effective relaxation time of viscoelastic interfaces and estimate the thickness of the interfacial layer and the viscoelastic properties of liquid-fluid interfaces, where the direct measurement of interfacial rheology is not possible.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call