Abstract

In contrast to the well-established and widely used theory of photoacoustic signal generation by single delta-like pulses, the field of multiple pulse excitation is not yet studied well. Using double-pulse excitation can be beneficial, but as ultrasound transducers have a certain waveform duration, the inter-pulse delays used might be limited. In order to assess the strength of the transducer influence at short delay times and develop data analysis procedure, we investigate the photoacoustic responses of a phantom sample to double-pulse excitation measured with different transducers. Both focused and flat surface single element transducers are used in the study. The central frequencies are chosen in the low-frequency band as they are most widely used in clinical ultrasound and one higher frequency transducer is taken for comparison. Despite not observing signal amplification due to Grueneisen relaxation effect, we show that transducer influence is not exceeding measurement error. Additionally we prove that single pulse subtraction procedure can be used to restore the second pulse waveform in double pulse excitation scheme. We believe using this procedure can be beneficial when transducer’s waveform duration is longer than used inter-pulse delays.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call