Abstract
Recently, much attention has been focused on new concepts of highly integrated spintronics devices based on magnetic domain walls driven by a spin-polarized current. However, several fundamental questions must be answered before the technology can be considered as feasible. This review covers the current understanding of DW propagation along sub-micronic size wires with ultra-thin films having perpendicular magnetic anisotropy. These films exhibit very narrow domain walls that interact strongly with pinning defects, making them model systems to study the dynamics of a 1D interface in a 2D weakly disorder medium. Three important issues are addressed: the peculiarities of domain wall motion driven by magnetic fields in nanoscale devices, the manipulation of the pinning potential for the control of efficient field induced domain wall motion, and the physics of current-driven domain wall motion.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.