Abstract

Understanding the dynamics of biopolymers in complex flows is critical for the successful design of lab-on-a-chip devices. In this paper, we demonstrate the first direct comparison of experiments and simulations of DNA transport in a pressure-driven post array flow. High aspect ratio ordered silicon posts arrays were microfabricated, and single molecule experiments were employed to examine the dynamics of DNA traversing through arrays of ordered obstacles. Three different geometries with varying post spacing were tested, and probability distributions of DNA hooking location and fractional DNA lengths were generated. It is demonstrated that the appropriate design of post array geometry can be used to control DNA conformation and guide the location of hooking events. Finally, agreement between experimental and Brownian dynamics simulation results is good, validating the simulations that can be used to guide future array designs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.