Abstract

Dissolved organic carbon (DOC) is a key water quality parameter that plays a crucial role in controlling aquatic ecosystems and carbon cycling. Understanding DOC dynamics during hydrological extremes (i.e., droughts and floods) helps in managing water quality, but such variability is rarely studied. Furthermore, how differences in DOC concentrations among phase-by-stages of drought/flood affect simulation performances based on hydrological features remains unclear. Here, phase-by-stages of hydrological drought (flood) were divided into intensification (rising) and recovery (falling) periods based on drought peak intensity (flood peak intensity). The long-term (1976–2019) daily discharge and weekly (biweekly) DOC concentrations from four headwater streams with different watershed sizes (from 9.97 to 119.09 ha) in south-central Ontario, Canada, were used to achieve the above aims. The results showed that (i) the average DOC concentration during intensification (rising) stage of drought (flood) was smaller (larger) than during recovery (falling). (ii) Simulations performed better when accounting for phase-by-stages of drought/flood, with reductions in mean absolute percentage error of 32.85 % and 53.59 % for drought and flood events, respectively. These results will help understand the dynamics of DOC during hydrological extremes and improve simulation performance of numerical models for water quality parameters under changing environmental conditions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.