Abstract

Superconducting flux qubits have many advantages as a storage of quantum information, such as broad range tunability of frequency, small-size fabricability, and high controllability. In the flux qubit-oscillator, qubits are connected to SQUID resonators for the purpose of performing dispersive non-destructive readouts of qubit signals with high fidelity. In this work, we propose a theoretical model for analyzing quantum characteristics of a flux qubit-oscillator on the basis of quantum solutions obtained using a unitary transformation approach. The energy levels of the combined system (qubit + resonator) are analyzed in detail. Equally spaced each energy level of the resonator splits into two parts depending on qubit states. Besides, coupling of the qubit to the resonator brings about an additional modification in the split energy levels. So long as the coupling strength and the tunnel splitting are not zero but finite values, the energy-level splitting of the resonator does not disappear. We conclude that quantum nondemolition dispersive measurements of the qubit states are possible by inducing bifurcation of the resonator states through the coupling.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.