Abstract

The co-evolutionary 'arms race' is a widely accepted model for the evolution of host-pathogen interactions. This model predicts that variation for disease resistance will be transient, and that host populations generally will be monomorphic at disease-resistance (R-gene) loci. However, plant populations show considerable polymorphism at R-gene loci involved in pathogen recognition. Here we have tested the arms-race model in Arabidopsis thaliana by analysing sequences flanking Rpm1, a gene conferring the ability to recognize Pseudomonas pathogens carrying AvrRpm1 or AvrB. We reject the arms-race hypothesis: resistance and susceptibility alleles at this locus have co-existed for millions of years. To account for the age of alleles and the relative levels of polymorphism within allelic classes, we use coalescence theory to model the long-term accumulation of nucleotide polymorphism in the context of the short-term ecological dynamics of disease resistance. This analysis supports a 'trench warfare' hypothesis, in which advances and retreats of resistance-allele frequency maintain variation for disease resistance as a dynamic polymorphism.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.