Abstract

The aim of this project is to improve the detection of coronary occlusions using an approach based on the recording and analysis of isolated diastolic heart sounds associated with turbulent blood flow in occluded coronary arteries. The nonlinear dynamic analysis method based on approximate entropy has been proposed for the analysis of diastolic heart sounds. A commercially available electronic stethoscope was used to record the diastolic heart sounds from patients diagnosed with or without coronary artery disease (CAD) based on their coronary angiography examination. The nonlinear dynamical analysis (approximate entropy) measures of the diastolic heart sounds recorded from 30 patients with coronary occlusions and ten normal subjects were estimated. Results suggest the presence of the high nonlinear (approximate entropy) values of diastolic heart sounds associated with CAD (p < 0.05). This approach led to a sensitivity of 77%, a specificity of 80%, and an overall accuracy of 78%. As a summary, 23 out of 30 abnormal patients and eight out of ten normal patients were correctly detected.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.