Abstract

Detailed velocity and density measurements are used to investigate dense water dynamics in an inclined, silled channel of triangular cross-section with varying side slope α and adverse bed slope φ. For the steeper channel configuration considered (φ=3.6°), the dense-water bottom current is shown to be frictionally-controlled, with an internal flow structure characterized by a sharp pycnocline and decreasing isopycnal separation in the along-channel direction. For the milder up-sloping channel (φ=1.7°), the dense water outflow is shown to be hydraulically-controlled as the channel sill section is approached, with internal flow dynamics characterized by increasing isopycnal separation in the along-channel direction. Analysis of the gradient Richardson number Rig of the flow confirms that hydraulically-controlled flows dilute the active bottom water due to interfacial mixing. A gradually-varying internal flow model and a two-layer hydraulic modelling approach are shown, respectively, to represent adequately the outflow behaviour for these two bed slope conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.