Abstract
Detailed velocity and density measurements are used to investigate dense water dynamics in an inclined, silled channel of triangular cross-section with varying side slope α and adverse bed slope φ. For the steeper channel configuration considered (φ=3.6°), the dense-water bottom current is shown to be frictionally-controlled, with an internal flow structure characterized by a sharp pycnocline and decreasing isopycnal separation in the along-channel direction. For the milder up-sloping channel (φ=1.7°), the dense water outflow is shown to be hydraulically-controlled as the channel sill section is approached, with internal flow dynamics characterized by increasing isopycnal separation in the along-channel direction. Analysis of the gradient Richardson number Rig of the flow confirms that hydraulically-controlled flows dilute the active bottom water due to interfacial mixing. A gradually-varying internal flow model and a two-layer hydraulic modelling approach are shown, respectively, to represent adequately the outflow behaviour for these two bed slope conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.