Abstract
Cytoplasmic dynein is a minus-end-directed microtubule motor that participates in multiple cellular activities such as organelle transport and mitotic spindle assembly [1]. To study the dynamic behavior of cytoplasmic dynein in the filamentous fungus Aspergillus nidulans, we replaced the gene for the cytoplasmic dynein heavy chain, nudA, with a gene encoding a green fluorescent protein (GFP)-tagged chimera, GFP-nudA. The GFP-NUDA fusion protein is fully functional in vivo: strains expressing only the GFP-tagged nudA grow as well as wild-type strains. Fluorescence microscopy showed GFP-NUDA to be in comet-like structures that moved in the hyphae toward the growing tip. Retrograde movement of some GFP-NUDA comets after they arrived at the tip was also observed. These dynamics of GFP-NUDA were not observed in cells treated with a microtubule-destabilizing drug, benomyl, suggesting they are microtubule-dependent. The rate of GFP-NUDA tip-ward movement is similar to the rate of cytoplasmic microtubule polymerization toward the hyphal tip, suggesting that GFP-NUDA is associated and moving with the polymerizing ends of microtubules. A mutation in actin-related protein Arp1 of the dynactin complex abolishes the presence of these dynamic GFP-NUDA structures near the hyphal tip, suggesting a targeting role of the dynactin complex.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.