Abstract

Species-specific behaviours gradually emerge, via incomplete patterns, to the final complete adult form. A classical example is birdsong, a learned behaviour ideally suited for studying the neural and molecular substrates of vocal learning. Young songbirds gradually transform primitive unstructured vocalizations (subsong, akin to human babbling) into complex, stereotyped sequences of syllables that constitute adult song. In comparison with birdsong, territorial and mating calls of vocal non-learner species are thought to exhibit little change during development. We revisited this issue using the crowing behaviour of domestic Japanese quail (Coturnix coturnix japonica). Crowing activity was continuously recorded in young males maintained in social isolation from the age of three weeks to four months. We observed developmental changes in crow structure, both the temporal and the spectral levels. Speed and trajectories of these developmental changes exhibited an unexpected high inter-individual variability. Mechanisms used by quails to transform sounds during ontogeny resemble those described in oscines during the sensorimotor phase of song learning. Studies on vocal non-learners could shed light on the specificity and evolution of vocal learning.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.