Abstract

Molecular dynamics simulations were performed with a potential shell model to investigate the diffusion of lithium ions and electron polarons in rutile and anatase. Simulations of an isolated lithium ion in rutile predict fast diffusion in the c channels with an activation energy of 0.05 eV, which corresponds to a jump rate of 4 × 1011 s−1 and a diffusion coefficient of 9 × 10−5 cm2·s−1 at room temperature. In anatase, the activation energies for intra- and interoctahedron lithium hopping are 0.02 and 0.39 eV, respectively, and the lithium diffusion coefficient is 4−5 orders of magnitude slower than in rutile. When in the presence of an electron polaron, lithium hopping is predicted to be affected up to four hops away. The effects are more pronounced in rutile; whereby the first energy minimum along the c direction is absent due to the strong lithium-electron electrostatic interactions along the open c channels. Combining the lithium and electron polaron hopping rates, a coupled diffusion mechanism emerge...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.