Abstract

Using numerical methods, we study the propagation of counterpropagating pulses in finite photonic crystals. We show that linear interference and localization effects combine to either enhance or suppress stimulated emission processes, depending on the initial phase difference between the input pulses. We consider the example of second harmonic generation, where we find a maximum contrast of three orders of magnitude in nonlinear conversion efficiency as a function of the input phase difference between incident pulses. We interpret these results by viewing the photonic crystal as an open cavity, with a field-dependent, electromagnetic density of modes sensitive to initial and boundary conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call