Abstract
In this paper we give five gauge-invariant systems of governing equations for first and second order scalar perturbations of flat Friedmann-Lema\^{\i}tre universes that are minimal in the sense that they contain no redundant equations or variables. We normalize the variables so that they are dimensionless, which leads to systems of equations that are simple and ready-to-use. We compare the properties and utility of the different systems. For example, they serve as a starting point for finding explicit solutions for two benchmark problems in cosmological perturbation theory at second order: adiabatic perturbations in the superhorizon regime (the long wavelength limit) and perturbations of $\mathrm{\ensuremath{\Lambda}}\mathrm{CDM}$ universes. However, our framework has much wider applicability and serves as a reference for future work in the field.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.