Abstract
The generation and destruction of the supercurrent in a superconductor (S) between two resistive normal (N) current leads connected to a current source is computed from the source equation for the supercurrent density. This equation relates the gradient of the pair potential's phase to electron and hole wavepackets that create and destroy Cooper pairs in the N/S interfaces. Total Andreev reflection and supercurrent transmission of electrons and holes are coupled together by the phase rigidity of the non-bosonic Cooper-pair condensate. The calculations are illustrated by snapshots from a computer film.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.