Abstract

Time-dependent conformal maps are used to model a class of growth phenomena limited by coupled non-Laplacian transport processes, such as nonlinear diffusion, advection, and electromigration. Both continuous and stochastic dynamics are described by generalizing conformal-mapping techniques for viscous fingering and diffusion-limited aggregation, respectively. The theory is applied to simulations of advection-diffusion-limited aggregation in a background potential flow. A universal crossover in morphology is observed from diffusion-limited to advection-limited fractal patterns with an associated crossover in the growth rate, controlled by a time-dependent effective Péclet number. Remarkably, the fractal dimension is not affected by advection, in spite of dramatic increases in anisotropy and growth rate, due to the persistence of diffusion limitation at small scales.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.