Abstract
Driven diffusive systems such as the zero-range process (ZRP) and the pair-factorized steady states (PFSS) stochastic transport process are versatile tools that lend themselves to the study of transport phenomena on a generic level. While their mathematical structure is simple enough to allow significant analytical treatment, they offer a variety of interesting phenomena. With appropriate dynamics, the ZRP and PFSS models feature a condensation transition where, for a supercritical density, the translational symmetry breaks spontaneously and excess particles form a single-site or spatially extended condensate, respectively. In this paper we numerically study the typical time scales of the two stages of this condensation process: Nucleation and coarsening. Nucleation is the first stage of condensation where the bulk system relaxes to its stationary distribution and droplet nuclei form in the system. These droplets then gradually grow or evaporate in the coarsening regime to coalesce in a single condensate when the system finally relaxes to the stationary state. We use the ZRP condensation model to discuss the choice of the estimation method for the nucleation time scale and present scaling exponents for the ZRP and PFSS condensation models with respect to the choice of the typical droplet nuclei mass. We then proceed to present scaling exponents in the coarsening regime of the ZRP for partially asymmetric dynamics and the PFSS model for symmetric and asymmetric dynamics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.