Abstract

Adsorption of mixed polymer solutions in good solvent containing polymers of different chain length has been studied by applying simulation techniques on a coarse-grained bead-spring polymer model. Fully flexible polymers at varying bead-surface interaction strength and different combinations of flexible, semiflexible, and stiff polymers at a single bead-surface interaction strength have been examined. Monte Carlo simulation techniques have been employed to investigate static equilibrium properties and Brownian dynamic simulations to follow the dynamics of the adsorption process. The properties examined comprise the adsorbed number of polymers, adsorbed number of beads, bead density profiles, components of the polymer radius of gyration, tail, loop, and train configurations, and nematic bond order of adsorbed beads. The adsorption involves an initially independent adsorption of the two polymer types followed by competitive adsorption. The competitive adsorption is characterized by a maximum of the adsorbed amount and a desorption of the polymer with the smallest surface affinity and a continued, but reduced, growth of the adsorbed amount of the polymer with the largest surface affinity. The surface affinity difference between the two polymer types of different length increased with increasing bead-surface interaction. Furthermore, the surface affinity of a polymer initially decreased but then largely increased at increasing stiffness. As a consequence, a stiff short polymer was found to displace a 4-fold longer flexible polymer. The spatial extension of adsorbed polymers as characterized by the radius of gyration parallel and perpendicular to the surface of a polymer of a given flexibility was independent of the flexibility of the other polymer type. The fraction of beads in tails was increased and in trains reduced as the surface affinity of the dissimilar polymer type was raised. Finally, the adsorption layer of a stiff polymer possesses a nematic bond order. In mixed polymer systems, the nematic bond order of a given polymer type manifests a dependence on the flexibility of the other type.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.