Abstract

We present a time-resolved infrared (IR) pump and extreme-ultraviolet (XUV) probe diffraction experiment to investigate ultrafast structural dynamics in colloidal crystals with picosecond resolution. The experiment was performed at the FLASH facility at DESY with a fundamental wavelength of 8 nm. In our experiment, the temporal changes of Bragg peaks were analyzed, and their frequency components were calculated using Fourier analysis. Periodic modulations in the colloidal crystal were localized at a frequency of about 4--5 GHz. Based on the Lamb theory, theoretical calculations of vibrations of the isotropic elastic polystyrene spheres of 400 nm in size reveal a 5.07-GHz eigenfrequency of the ground (breathing) mode.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call