Abstract
We analyze the dynamics of N interacting spins (quantum register) collectively coupled to a thermal environment. Each spin experiences the same environment interaction, consisting of an energy conserving and an energy exchange part.We find the decay rates of the reduced density matrix elements in the energy basis. We show that if the spins do not interact among each other, then the fastest decay rates of off-diagonal matrix elements induced by the energy conserving interaction is of order N2, while that one induced by the energy exchange interaction is of the order N only. Moreover, the diagonal matrix elements approach their limiting values at a rate independent of N. For a general spin system the decay rates depend in a rather complicated (but explicit) way on the size N and the interaction between the spins.Our method is based on a dynamical quantum resonance theory valid for small, fixed values of the couplings. We do not make Markov-, Born- or weak coupling (van Hove) approximations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.