Abstract

The collapse kinetics of strongly charged polyelectrolytes in poor solvents is investigated by Langevin simulations and scaling arguments. We investigate the role of valence z of counterions, solvent quality, and shape of counterions on the dynamics of collapse. On the basis of the simulations, a number of results are obtained. (1) The rate of collapse, which is measured using the time dependence of the radius of gyration of the chain, increases sharply as z increases from 1 to 4. The collapse is particularly slow for the monovalent case and is observed only when the solvent quality is sufficiently poor. (2) Although the routes to collapse depend on z and the solvent quality a general collapse mechanism emerges. Upon quenching to low temperatures, counterions condense rapidly on a diffusion-limited time scale. At intermediate times metastable pearl-necklace structures form. The clusters merge at longer times with the largest one growing at the expense of smaller ones which is reminiscent of the Lifshitz−S...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call