Abstract

The stability and dynamics of microbubbles coated with an interfacial layer of adsorbed material, ranging from phospholipids, to proteins and nanoparticles, are central to food products, biomedical imaging applications, and controlled release. The dynamics of coated microbubbles in ultrasound fields are of particular relevance to food production and biomedical imaging. High-speed imaging has proven to be an invaluable tool to reveal micromechanical phenomena of the coating during ultrasound-driven microbubble dynamics, so as to gain a fundamental understanding of the factors affecting microbubble durability and performance. This Chapter includes an introduction to the basic concepts of microbubble stability (Sect. 1), and to the dynamics of coated microbubbles in ultrasound (Sect. 2). An overview of recent research advances is then provided, focusing on the following topics: Dynamics of biomedical microbubbles in ultrasound studied by combined optical trapping and ultra-high speed imaging (Sect. 3); Buckling and expulsion of coating material from ultrasound-driven microbubbles (Sect. 4); Shape oscillations of coated bubbles (Sect. 5).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call