Abstract

The biomass and decomposition of coarse woody debris (CWD, ≥10 cm in diameter) were studied in a monsoon evergreen broad-leaved old-growth forest in Dinghushan Nature Reserve, Southern China. The study examined the biomass of CWD from 1992 to 2008 and decomposition of three dominant tree species CWD ( Castanopsis chinensis, Cryptocarya concinna, Schima superba) from 1999 to 2008. Changes in the wood density of three tree species’ CWD were used to estimate the decay rates with a single exponential model. The results showed that the biomass of CWD in the old-growth forest was increasing from 17.41 tonnes ha −1 (t ha −1) in 1992 to 38.54 t ha −1 in 2008, and a higher decay constant was observed for C. concinna (0.1570 – 19 years for 95% mass loss); the decay rates of S. superba and C. chinensis were 0.1486 (20 years for 95% mass loss) and 0.1095 (27 years for 95% mass loss), respectively. The difference in decay constant rates may be due to their substrate quality and decomposers. The content of carbon (C) in three species declined after 9 years of decay. Nitrogen (N) content increased in all species with decay. The C/N ratio in the three species declined during the decay process.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call