Abstract

Within mixed-genotype infections of malaria parasites (Plasmodium), the number of genetic clones present is associated with variation in important life history traits of the infection, including virulence. Although the number of clones present is important, how the proportion of those clones varies over time is poorly known. Clonal proportions of the lizard malaria parasite, Plasmodium mexicanum, were assessed in naturally infected free-ranging lizards followed in a mark-recapture program over as long as two warm seasons, the typical life span of the lizard. Clonal proportions were determined by amplifying two microsatellite markers, a method previously verified for accuracy. Most blood samples had been stored for over a decade, so a verification test determined that these samples had not degraded. Although the environment experienced by the parasite (its host) varies over the seasons and transmission occurs over the entire warm season, 68% of infections were stable over time, harboring a single clone (37% of infections) or multiple clones changing only 1-12% maximum comparing any two samples (31% of infections). The maximum change seen in any infection (comparing any two sample periods) was only 30%. A new clone entered three infections (only once successfully), and a clone was lost in only three infections. These results mirror those seen for a previous study of experimentally induced infections that showed little change in relative proportions over time. The results of this study, the first look at how clonal proportions vary over time for any malaria parasite of a nonhuman vertebrate host for natural infections, were surprising because experimental studies show clones of P. mexicanum appear to interact, yet relative proportions of clones typically remain constant over time.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.