Abstract

Chiral solitons are one dimensional localized magnetic structures that are metastable in some ferromagnetic systems with Dzyaloshinskii–Moriya interactions and/or uniaxial magnetic anisotropy. Though topological textures in general provide a very interesting playground for new spintronics phenomena, how to properly create and control single chiral solitons is still unclear. We show here that chiral solitons in monoaxial helimagnets, characterized by a uniaxial Dzyaloshinskii–Moriya interaction, can be stabilized with external magnetic fields. Once created, the soliton moves steadily in response to a polarized electric current, provided the induced spin-transfer torque has a dissipative (nonadiabatic) component. The structure of the soliton depends on the applied current density in such a way that steady motion exists only if the applied current density is lower than a critical value, beyond which the soliton is no longer stable.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.