Abstract

A test particle code is employed to explore the dynamics of charged particles and perpendicular diffusion in turbulent magnetic field, where a three-dimensional (3D) isotropic turbulence model is used in this paper. The obtained perpendicular diffusion at different particle energies is compared with that of the nonlinear guiding center (NLGC) theory. It is found that the NLGC theory is consistent with test particle simulations when the particle energies are small. However, the difference between the NLGC theory and test particle simulations tends to increase when the particle energy is sufficiently large, and the threshold is related to the turbulence bend-over length. In the NLGC theory, the gyrocenter of a charged particle is assumed to follow the magnetic field line. Therefore, when the particle has sufficiently large energy, its gyroradius will be larger than the turbulence bend-over length. Then the particle can cross the magnetic field lines, and the difference between the test particle simulations and NLGC theory occurs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call