Abstract

We present a model for the dynamics of elastic or poroelastic bodies with monopolar repulsive long-range (electrostatic) interactions at large strains. Our model respects (only) locally the non-self-interpenetration condition but can cope with possible global self-interpenetration, yielding thus a certain justification of most of engineering calculations which ignore these effects in the analysis of elastic structures. These models necessarily combines Lagrangian (material) description with Eulerian (actual) evolving configuration evolving in time. Dynamical problems are studied by adopting the concept of nonlocal nonsimple materials, applying the change of variables formula for Lipschitz-continuous mappings, and relying on a positivity of determinant of deformation gradient thanks to a result by Healey and Krömer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.