Abstract

We have measured the transmission of 230-keV (10-keV/$q$) Xe${}^{23+}$ ions through insulating tapered glass capillaries of microscopic dimensions. The dynamics of charging and discharging processes have been investigated, evidencing an unexpected slow alignment of the beam along the capillary axis. Oscillations of the exiting beam position have been observed during the charging process associated to the formation of charge patches on the capillary inner walls. The emerging ions are guided with a characteristic guiding angle falling on a universal curve proposed for PET polymer nanocapillaries. This result, very similar to the channeling process, is somewhat surprising in view of the significant differences between the straight nanocapillary polymer foils and the tapered microscopic single glass capillary used here. The transmitted ions show no evidence of energy loss or charge changing except for the production of a small neutral fraction that was determined to be due to ions that had become neutralized to form atoms rather than due to photon emission. These results thus test and confirm the validity of transmission and guiding and provide insight into the dynamics of higher-energy ions than have been previously studied in this regard, allowing a determination of the maximum energy for which the guiding process might occur.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.