Abstract
Recent evidence suggests that programmed cell death (PCD) can play a role in stress-induced decline and termination of harmful algal blooms. However, components of the PCD cascade, i.e. reactive oxygen species (ROS) and caspase-like activity, have also been observed in the absence of exogenous stress, where their activities and functions remain unclear. Here, we characterized the variability of prevalence of cell death, ROS, and caspase-like activity at different growth phases and diel cycles in cultures of dinoflagellate Karenia brevis. Results show that ROS percentages increased with culture age and fluctuated in a phasing diel pattern, while caspase-like activity was observed throughout growth. In actively growing K.brevis cells, PCD components may be involved in key metabolic processes, while in stationary phase they may relate to stress acclimation. The circadian diel pattern of ROS may be explained by the balance between the metabolic generation of ROS and circadian rhythmicity of antioxidant enzymes. Overall, this work highlights not only the involvement of PCD components in the growth of marine phytoplankton, but the importance of understanding mechanisms controlling their accumulation, which would help to better interpret their presence in the field.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.