Abstract

Transient and steady-state responses of stroke volume (SV), heart rate (HR), cardiac output (Q), left ventricular ejection time (LVET), preejection period (PEP), and the ratio of LVET to PEP during bicycle exercises of 50 and 100 W were studied in four healthy male subjects in supine and upright postures. A computer-based system in which impedance cardiography was incorporated served to determine the above parameters on a 10-s interval basis. SV remained almost unchanged in response to exercises in a supine posture, whereas it increased significantly in an upright posture, although the individual differences among subjects were found to be large. The half-response times of variables to a step work load were determined. An approximate accordance was observed among the response times for HR, Q, and LVET/PEP. There was an inverse relationship between LVET and HR, the slope of which was found to be steeper in the supine posture than in the upright posture, reflecting the difference between the SV responses in both postures. LVET fell shortly after the cessation of exercise despite the decreasing HR. Inasmuch as the paradoxical reduction of LVET was also found in the case where SV remained unchanged in response to exercise, no changes in SV can be the cause thereof. Thus, a transient increase in ejection rate, which is due to either the increased myocardial contractility or decreased peripheral vascular resistance, may be responsible for the phenomenon.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call