Abstract

Decomposing residues can be an important source of nutrients for plants, especially of N and P, but the relationship between N and P release and microbial community dynamics have rarely been studied. Two pea (Pisum sativum L.) residues with contrasting chemical composition, shoots from flowering pea (Pea-Y) with 2.9 mg P and 36 mg N kg−1 and from mature pea (Pea-M) with 0.3 mg P and 13 mg N kg−1, were added at a rate of 20 g kg soil−1 to a sandy soil low in nutrients. Particulate organic matter (POM) was isolated on days (d) 0, 5, 15, 28, 42 and 61 after residue addition and analysed for C, N, P and microbial community structure (fatty acid methyl ester analysis). The recovery of POM from residue-amended soils decreased over time to 30–40% of added amounts for both residues. Apart from d 0, the N concentration in POM was lower in residue-amended soil than in the control. Due to a rapid decrease in P concentration during the first 5 days in Pea-Y and a slow increase over the whole experiment in Pea-M, P concentrations in POM on d 61 were similar in all treatments. In Pea-Y, the dynamics of C, N and P were coupled, with amounts of C, N and P decreasing during the first 15 days and remaining stable thereafter. In Pea-M, a steady loss of C from POM was contrasted by a slight increase in P. As a result, the C/P ratio decreased from 1,330 on d 0 to 390 on d 61. The C/N ratio of Pea-M decreased only during the second phase of decomposition. The different nutrient dynamics in Pea-Y and Pea-M led to similar amounts of N and P in POM towards the end of the incubation. Microbial community composition in the POM in Pea-Y and Pea-M remained distinct from the control, even though it changed over time. POM was shown to be an important source of potentially available nutrients after addition of plant residues. In the unamended soil, stable nutrient amounts in POM suggested very low net nutrient release from native POM compared to POM after residue addition.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.