Abstract

Motivated by recent experiments, we explore the kinetics of Bose-Einstein condensation in the upper band of a double well optical lattice. These experiments engineer a non-equilibrium situation in which the highest energy state in the band is macroscopically occupied. The system subsequently relaxes and the condensate moves to the lowest energy state. We model this process, finding that the kinetics occurs in three phases: The condensate first evaporates, forming a highly non-equilibrium gas with no phase coherence. Energy is then redistributed among the noncondensed atoms. Finally the atoms recondense. We calculate the time-scales for each of these phases, and explain how this scenario can be verified through future experiments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.