Abstract

This paper presents and discusses new autopsy results and other historic data from earlier autopsies and environmental monitoring linked to releases from the Mayak PA facilities in the Chelyabinsk oblast in the southern Urals. The focus is on residents of the town of Ozyorsk located near to Mayak PA and the dynamics of body burdens and radiation doses from inhalation of plutonium alpha and americium-241, and ingestion of strontium-90 and caesium-137. It is demonstrated that accumulation and exposure from these radionuclides was mainly due to unplanned releases in the 1950s and 60s. The mean content of plutonium alpha at the time of autopsy of people commencing residence in Ozyorsk from 1949 to 1959 was about 3.5 Bq, falling to 0.2 Bq in those arriving after 1990. A reducing trend was also seen for 241Am. The highest 90Sr content in Ozyorsk residents was measured in 1967. The 137Cs body content of residents arriving in Ozyorsk at any time was in almost all cases below the limit of detection. The committed effective dose from internal exposure to these long-lived radionuclides which would have been accumulated in Ozyorsk residents if present from 1949 to 2013 is estimated to be 13 mSv. This dose is primarily attributed to intakes during 1949 to 1959 when the annual effective dose rate was approximately 1 mSv y−1. The current value is about 0.1 mSv y−1. This dose is about 20 times higher than the dose from global man-made fallout, which is about 0.005 mSv y−1 at present, but much lower than that from natural background radiation, i.e. about 2 mSv y−1.The experience gained from this work and continuing activities can contribute to the development of improved international guidance in legacy situations, particularly as regards the provision and use of monitoring data to test and thereby build confidence in prognostic models for radiation conditions and potential future exposures. The scope includes evidence for the rate of reduction in radionuclide concentrations in environmental media and in their bioavailability, resuspension of long-lived alpha radionuclides, uptake of 90Sr and 137Cs in the food-chain, and confirmation of cumulative uptake via autopsy and whole body counting measurements. Continuing investigations will thus support decisions on future planned releases and contribute to planning of remediation of other areas affected by historic releases.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call