Abstract

We present a general solution for correlators of external boundary operators in black hole states of Jackiw-Teitelboim gravity. We use the Hilbert space constructed using the particle-with-spin interpretation of the Jackiw-Teitelboim action, which consists of wavefunctions defined on Lorentzian AdS2. The density of states of the gravitational system appears in the amplitude for a boundary particle to emit and reabsorb matter. Up to self-interactions of matter, a general correlator can be reduced in an energy basis to a product of amplitudes for interactions and Wilson polynomials mapping between boundary and bulk interactions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.