Abstract

In this paper, the periodic oscillatory solution and stability are investigated for a class of bidirectional associative memory neural networks with distributed delays and reaction–diffusion terms. By constructing a new Lyapunov functional, applying M-matrix theory and inequality technique, several novel sufficient conditions are derived to ensure the existence and uniqueness of periodic oscillatory solutions for bidirectional associative memory neural networks with distributed delays and reaction–diffusion terms, and all other solutions of this network converge exponentially to the unique periodic oscillatory solution. Moreover, the exponential convergence rate is estimated, which depends on the delay kernel functions and the system parameters. Two numerical examples are given to show the effectiveness of the obtained results. The results extend and improve the previously known results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.