Abstract

Base pairs are fundamental building blocks of RNA. The base pairs of low stability are often critical in RNA functions. Here, we develop a solid-state NMR-based water-RNA exchange spectroscopy (WaterREXSY) to characterize RNA in solid. The approach uses different chemical exchange rates between iminos and waterto evaluate base pair stability; the less stable ones would exchange more frequently, leading to stronger cross-peaks on WaterREXSY. Applied to the riboA71-adenine complex (the 71nt-aptamer domain of add adenine riboswitch from Vibrio vulnificus), the U47⋅U51 base pair, which is critical in ligand binding, was found to be less stable than other base pairs. The imino-water exchange rates of U47 at different temperatures are about 500-800 s-1, indeed indicative of low stability. This implies a highly complex and plastic triad involving U47⋅U51 and that the opening of the U47⋅U51 base pair may be the early stage of ligand release.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.