Abstract

As the crucial confluences of rivers and lakes, the estuary areas with varied hydrodynamic exchanges intensively affect the bacterioplankton communities, whereas the ecological characteristics of the bacterioplankton in the areas have not been well understood. Here, the distribution patterns and assembly mechanisms of bacterioplankton communities in the estuary areas of the Taihu Lake were investigated using high-throughput sequencing and multivariate statistical analyses. Our results showed obvious seasonal variations in bacterioplankton diversity and community composition, which had significant correlations with water temperature. Neutral and null models together revealed that stochastic processes (especially dispersal limitation) were the major processes in shaping the communities across different seasons. By contrast, heterogeneous selection in deterministic processes exhibited increased impacts on community assembly during summer and autumn, which was significantly related to the comprehensive water quality index (WQI) rather than any single factor. In this study, rare communities displayed more pronounced seasonal dynamics compared to abundant communities, likely due to their sensitivity towards environmental factors. Accordingly, the heterogeneous selection of deterministic processes largely shaped the rare communities. These results enriched our understanding of the assembly mechanisms of bacterioplankton communities in estuary areas and emphasized the specific co-occurrence patterns of abundant and rare communities.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call