Abstract

The holomictic Traunsee is the deepest and second largest lakein Austria. The special characteristic of this ecosystem isthe fact that local salt and soda industries presumably alterthe lake by the discharge of waste materials. Since thebeginning of the 20th century salt and soda works areannually releasing up to 50,000 tons of solid wastes and up to150,000 tons of chloride into Traunsee. To assess potentialeffects of these anthropogenic impacts on the bacterioplanktonthree sampling sites, influenced as well as not influenced bythe industrial discharge, were chosen for comparison andsampled monthly from November 1997 to October 1998. Bacterialabundance ranged between 0.4 to 3.0 × 106 cells ml-1 with decreasing numbers along the depth profile. Theproportion of actively respiring bacteria, i.e. INT [2-(4-iodophenyl)-3-(4-nitrophenyl)-5-phenyltetrazolium chloride]reducing cells, never exceeded 10% of DAPI (4',6'-diamidino-2-phenylindole) stained cells. Fluorescence in situ hybridization (FISH) was used to examine the seasonal and spatial distribution of dominant phylogenetic groups of thebacterioplankton. Up to 84% of bacteria detected with DAPIcould be detected via FISH applying the universal bacterialprobe EUB338. Percentages of alpha- and beta-Proteobacteriaand members of the Cytophaga-Flavobacterium cluster did notexceed 60% of DAPI-stained cells.Beta-Proteobacteriaappeared to be the most abundant group, not only in Traunsee butalso in two reference lakes, Attersee and Hallstattersee. No significant differences in any of the bacterial parameters couldbe detected between the three sampling sites and all measurementswere found in the range reported for oligotrophic lakes. The highdischarge of the Traun River, resulting in a lake water renewaltime of only one year, may diminish possible effects of industrial waste discharge in the pelagic zone.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call