Abstract

At the current stage of development, the transition to a circular economy is a single option to achieve sustainable mining. Purpose was to identify a direction for mining tailings usage based on the circular waste management. The novelty of the author's approach lies in regulation of mechanical treatment of slag to optimize the backfill composition. The methodology involved a study of mining waste (slag) obtained from major (eight) metallurgical plants in Russia. For mathematical processing primary data, smoothing and deterministic three-dimensional interpolation methods were used. As a result, for the first time it has been established that the ultimate uniaxial compressive strength after mechanical treatment of slag increases by logarithmic laws. As the curing time increases from 10 days to 90 days (with the addition of Ca or Si) the strength increases by 21 % (7 % and 23 %). The possibility of completely replacing the traditional cement binder with metallurgical slag in the backfill composite has been proven. It has been established that the use of activation treatment (both mechanical and chemical) makes it possible to increase the strength characteristics of backfill samples after their curing. The principle of organizing mining production has been implemented, which provides for the use of intermediate products (blast furnace granulated slag), previously classified as technogenic waste, in a closed production cycle. The introduction of this principle will eliminate (minimize) the formation of man-made waste. The scientific merit of replacing traditional cement binder with technogenic waste (blast furnace granulated slag) allows implementation of circular economy in mining.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.