Abstract
As a result of turbulence and finite Larmor radius effects, random radial currents are present in a tokamak plasma and these drive sheared axisymmetric poloidal flows. We model these currents with a noise source with given statistical properties and calculate the linear kinetic response to this source. Without collisions, there is no long term damping of these flows; when collisions are included, poloidal flows are damped. The mean square potential associated with these flows is given in terms of the linear response function we calculate and a model correlation function for the current source. Without collisions, the mean square flow increases linearly with time, but with collisions, it reaches a steady state. In the long correlation time limit, the collisionless residual flows are important in determining the mean square flow.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.