Abstract
An efficient technique for conducting rotating tumbler experiments in parallel is introduced and used to study the effect of tumbler length and periodic tilting of the tumbler on axial segregation. When rotated, bidisperse granular slurries segregate into what appear at the surface to be alternating bands of larger and smaller particles. The number of bands increases linearly with tumbler length while the fractional area occupied by each type of band is constant. Periodic tilting of the rotation axis induces a periodic axial flow of particles in the flowing layer. For the range of tilt angle amplitudes investigated (0 degrees -3.5 degrees), the number of bands decreases with increasing angle, but the rate of merging and the fractional area of bands rich in smaller particles are unaffected.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.