Abstract

AbstractThe asymmetric star polymers are studied by coarse grain simulations. Each polymer chain is represented by number of consecutive soft blobs and additional uncrossability constraints are added to prevent chain crossings. In this work two types of asymmetric star polymers with different backbone lengths are structured. Their dynamical properties are discussed by comparisons with corresponding linear chains, the one covers chain length along with the asymmetric arm through the branch point to one of the symmetric arm, or the backbone chain between two symmetric arm ends, or the largest linear possesses the same molecular weight of the entire star. To reveal the influence of the asymmetric arm length on their relaxation decay times, the autocorrelation function of the vectors from each branching point to corresponding asymmetric arm end are calculated, results are compared with the symmetric star having the same backbone chain.

Highlights

  • In order to understand the influence of the asymmetric arm on the star size and confirm the equilibrium of arm relaxation, the time dependent autocorrelation functions (ACF) for the unit vectors directed from each branch point to the end-point of the star asymmetric arms are calculated

  • The dynamical trend of asymmetric stars has been studied by using coarse graining method

  • Extra simulation times are still needed for those polymers to get better statistics

Read more

Summary

Introduction

AcsncprrcbblelttrsKpaeoieeieaohrnroooeabosnrodsnamaatylnollsngucysgyi.nrtiwunteeroesenmlstmTrceftsnhsiordeauhshbntclreescrcweneeahglobdragtrrtpinasiccossnar:ryisndrpotrgek.tas:iyehT.idwnniottsbiocnaanIThnhhyaunonicnosroateetnbbmdonaymhspmitiareormlitreiaoloebnomhrtmpifidswervtsccemngiaoyyetuissseishrgehrfcnlme,pealcfaeaaeoaeasteedwwolodisxmnrflstrnytnniyvoiaioeepchcwnot.emdsetrtnfsohretniawtksciiontorttrmtntmstitihhpahoansnohc.gbteieeeeriwrfentacE,tdsslcrslhsrsuacotityatacueainsiyeaklfeomccsectmrmerapbntiyhasasovyamrayromrecypmmeaeporsprmenoemremmpteasecoeetloiemsoehtydrmolgefarydirfmldalretecitttoceemeicraiihnetshnesfipiaKCaLmb(sLbencAriadccreeds,anwruisgntleelrsaerruc,aresobeoara,atta,tleotmidyamssohAeaahbdrsdrsrcspdatnywsFap(mrretTshyssh2p∗u,[roAseuweamanesw1mei4oeharaledlaordacirn1c,tyeiemirnsAeeceuhdrmos,tribhhnemcAdvbdaibhedtftrnlsLegianatae[yspusooealoi∗nelh1iatevhnc,etastaeosst:cdarnurr,cgeeiiurioemtttndiotoLcdoioingtitdTrrmcreslerfoccdrhbropumareehnagimhdrhiftodrevifAapoaeottcseda:otoerpttttaeulefcittirarilnhhhhb∗t1eiTanaouiodraamerkKbsra7n.ydeeeease1grt------er,,VgeBerI4eruroancoldw3..mscndw8on7eo(rdsbfiactawsstpsamitipa,]nnrh]h6ebehatttolltrsnfeaio)o,olaluaaf1cimv-fevtye;nlliii-ndlg9mcftr5[aerrihesdezgymdefete(3ksrrhss)dASCisraaaapvymeo,exmrri.uct,snamtitmoilmhebsh)r2oaiuptmiaBanaTltlseennerhanoaa1tlelehetarespkssellxriihyexmphrdvndtiittvderlelstswpnmworpgtetiiluieoeedesouFiiinehsVyemasoesnoesdeclcafnhsnhely-sgLpuiniaptlctbaire.egglseimrryetternredeisseyctcbrldihsSrtornymn(fnveeytvohhmaah,paearat2oue(eantesdneeaehrnreeasniatl1rrrx(cloamsancesanhtitvmra,e(ayr1laochwhtae2htsf1slnmire8creept4hsirtnq(,t20mtemahimgror,(d9emao.ait[e)1autasgew1-1aane1-.l1hti9dspi-sr1u,aapypoTsraha0t5z7clIiaye)t2meicelelmtt5ntefa)dr.e)tpase,er,mhrohrndua.uv.dl2perieitiDrise5steetfTrmlgie,r0wacrxamehtrhowflir]tnaoeeothhtconeian)n)e,ncseniuhiosge.lse;aftrnepsotcolsdcsaleoret,xirtylsrcha(tnadeoevhnewmoripneursiVeiasgbrarbil,ev-ifsstthcomyflrmttrooelveoslr,bht)-ifieilaemyrlailerfss-rapredloteoeaiesyskaregdahntnogssaaaudnemtaaonms,innutbuhcrrfhtenslcohocrnayabgeehghae6elyaaeasetrahgfoloanaieteeter.wmsyyrtlvashL1prrpftep-renoiiboomoLieu]atocomemeunopitcootg)ervffnetarhrtho-;rmilsrnaotrrmuoeeaaonlsytwleimhoetn(aeamitrtsrmulonmeintorqerpoapasrahrmiyaistdifyreiFagypcmtnrutrrcreohmiti)hsitsioemnidricalvrelterohwataacteesdelwnotmwhrepsdhy,nssmtmphmetmrinn.tsaspeyhycsieatoephaaatTththgeerw.eibesalmantiirhrncLriythctegotsyrnuneoarieHordtetleaimhrmreapfritdtcsneicer(.mmcsaloeycntatskacefu-lnleo.niovurdOnraegseasosaosarcctgFotoirnmriatrcrneananhnefnlmtateaisotttmmisluehnnddrooogyeectsssao[ertrdsh1abnddpip3leenpuio,itezsna(ehlDsiestaignieamerdetredineadvnLotocsn[uoeebd4mesitaoaeot,da(loinlsCciliio)ritlmiaioysnynpatrhrethdfbA1ot De nition 1.4]); (vi)otvheer Ltehoenbaerdhapvaioirrscobnestiwsetienng aofsaympamiretorifcopstpaor saitnedgeanerators for th bra, acting on an evalilnueaatriopnomlymodeur loef(stehee [s5a,mPreoparomsitlieonng9th.2]a)s. Because of the coarse-graining, the equation of motion of the position of the blobs can be described by the simple first order Langevin equation, which involves the conservative forces FC derived from the potential of mean force Φ, blobs will become so weak that bond crossings may occur To prevent such unrealistic event, an additional uncrossibility algorithm, called Twentanglement is developed (23). The entanglement positions are updated along with the moving of pair blobs and will be fixed at the points with the equilibrium of forces in the system This is carried out by the minimization of total attractive potential energy for the given configuration Rn of the blobs, FR (t )FR (0).

Results and discussion
Y-shaped asymmetric stars
Conclusions
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.