Abstract

Chicken erythroid ankyrin undergoes a fairly rapid cycle of cytoskeletal association, dissociation, and turnover. In addition, the cytoskeletal association of ankyrin is regulated by phosphorylation. Treatment of erythroid cells with serine and threonine phosphatase inhibitors stimulated the hyperphosphorylation of the 225- and 205-kDa ankyrin isoforms, and dissociated the bulk of these isoforms from cytoskeletal spectrin. In vitro binding studies have shown that this dissociation of ankyrin from spectrin in vivo can be attributed to a reduced ability of hyperphosphorylated ankyrin to bind spectrin. Interestingly, a significant fraction of detergent insoluble ankyrin accumulates in a spectrin-independent pool. At least some of this spectrin-independent pool of ankyrin is complexed with the AE1 anion exchanger, and the solubility properties of this pool are also regulated by phosphorylation. Treatment of cells with serine and threonine phosphatase inhibitors had no effect on ankyrin/AE1 complex formation. However, these inhibitors were sufficient to shift ankyrin/AE1 complexes from the detergent insoluble to the soluble pool. These analyses, which are the first to document the in vivo consequences of ankyrin phosphorylation, indicate that erythroid ankyrin-containing complexes can undergo dynamic rearrangements in response to changes in phosphorylation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.