Abstract

ABSTRACTIn multi-body dynamics, we model a non-conformal wheel/rail contact at one centre point since this contact is flat and Hertzian. However, the quasi-conformal contact requires more points since the contact is curved and non-Hertzian. The methodology in solving these points during dynamic simulations is the basis of this development. In this online effort, first, we present a general contact joint and the gutter search method of Pascal and Jourdan [The rigid-multi-Hertzian method as applied to conformal contacts. USA: ASME; 2007] in the context of a multi-body approach. Next, by adopting the non-iterative approach, a subset of these points with positive profile interpenetrations is selected to idealise one curved contact by a set of multi-Hertzian patches for which the Hertz normal contact solution is available. Finally, the feasibility of this multibody approach together with its implementation in two different codes is evaluated by simulating the motion of an isolated wheelset with realistic inertia. On tangent tracks, the wheelset with non-conformal pairing displays self-excited unstable oscillations while it displays a stable behaviour below a critical speed with conformal profiles. A further study reveals the net friction losses at multiple patches within the curved contact being the reason for the stable behavior.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call