Abstract

Bacterial insertion sequences (ISs), the simplest form of autonomous mobile DNA, depend on their prokaryote hosts to spread in a spatially structured environment. We use a spatially explicit metapopulation model to simulate the spread of an IS that can have both detrimental and beneficial effects on its host cell. We find that, on the one hand, the spatial structure of the metapopulation and cell dispersal between subpopulations have no strong effect on the time to full infection of the metapopulation. On the other hand, factors that influence the IS infection dynamics within a subpopulation have a strong effect on that time. These factors are mainly the fitness benefit of an IS and the rate of horizontal gene transfer. We also find that the infection process of a metapopulation is very erratic in its early phase. Finally, we show that the infection’s success depends critically on the initially infected subpopulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call